关于人工智能的海报智能的概念人工智能具体实例
编者按:近年来,人工智能(AI)正在不断释放科技和产业变革积蓄的巨大能量,深刻改变着人类生产生活方式和思维方式,推动社会生产力整体跃升
编者按:近年来,人工智能(AI)正在不断释放科技和产业变革积蓄的巨大能量,深刻改变着人类生产生活方式和思维方式,推动社会生产力整体跃升。什么是AI?它将为我们带来哪些价值?即日起,我们将陆续分享AI科普系列文章。后续更新敬请关注!
近几年,人工智能迅速发展,各种人工智能颠覆产业、颠覆生活的“宏大愿景”呈现在我们的眼前。但你知道吗?人工智能发展至今已经有接近70年历史。
人工智能的概念诞生于1956年,在半个多世纪的发展历程中,由于受到智能算法、计算速度、存储水平等多方面因素的影响人工智能具体实例,人工智能技术和应用发展经历了多次和低谷智能的概念。
2006年以来,以深度学习为代表的机器学习算法在机器视觉和语音识别等领域取得了极大的成功,识别准确性大幅提升,使人工智能再次受到学术界和产业界的广泛关注。
云计算、大数据等技术在提升运算速度,降低计算成本的同时,也为人工智能发展提供了丰富的数据资源,协助训练出更加智能化的算法模型。人工智能的发展模式也从过去追求“用计算机模拟人工智能”,逐步转向以机器与人结合而成的增强型混合智能系统,用机器、人、网络结合成新的群智系统,以及用机器、人智能的概念、网络和物结合成的更加复杂的智能系统。
第一阶段(20世纪50年代——80年代)。这一阶段人工智能刚诞生,基于抽象数学推理的可编程数字计算机已经出现,符号主义(Symbolism)快速发展人工智能具体实例,但由于很多事物不能形式化表达,建立的模型存在一定的局限性关于人工智能的海报。此外,随着计算任务的复杂性不断加大,人工智能发展一度遇到瓶颈。
第二阶段(20世纪80年代——90年代末)。在这一阶段,专家系统得到快速发展,数学模型有重大突破,但由于专家系统在知识获取、推理能力等方面的不足,以及开发成本高等原因,人工智能的发展又一次进入低谷期。
第三阶段(21世纪初——至今)。随着大数据的积聚、理论算法的革新、计算能力的提升,人工智能在很多应用领域取得了突破性进展,迎来了又一个繁荣时期。人工智能具体的发展历程如图1所示。
长期以来,制造具有智能的机器一直是人类的重大梦想。早在1950年关于人工智能的海报,Alan Turing在《计算机器与智能》中就阐述了对人工智能的思考。他提出的图灵测试是机器智能的重要测量手段,后来还衍生出了视觉图灵测试等测量方法。
1956年,“人工智能”这个词首次出现在达特茅斯会议上,标志着其作为一个研究领域的正式诞生。六十年来,人工智能发展潮起潮落的同时,基本思想可大致划分为四个流派:符号主义(Symbolism)、连接主义(Connectionism)、行为主义(Behaviourism)和统计主义(Statisticsism)(注:由于篇幅原因,本不对四个流派进行详细阐述)。这四个流派从不同侧面抓住了智能的部分特征,在“制造”人工智能方面都取得了里程碑式的成就智能的概念。
1959年,Arthur Samuel提出了机器学习,机器学习将传统的制造智能演化为通过学习能力来获取智能,推动人工智能进入了第一次繁荣期。20世纪70年代末期专家系统的出现,实现了人工智能从理论研究走向实际应用,从一般思维规律探索走向专门知识应用的重大突破,将人工智能的研究推向了新。
然而,机器学习的模型仍然是“人工”的,也有很大的局限性。随着专家系统应用的不断深入,专家系统自身存在的知识获取难、知识领域窄、推理能力弱、实用性差等问题逐步暴露。从1976年开始关于人工智能的海报,人工智能的研究进入长达6年的萧瑟期。
在80年代中期,随着美国、日本立项支持人工智能研究,以及以知识工程为主导的机器学习方法的发展,出现了具有更强可视化效果的决策树模型和突破早期感知机局限的多层人工神经网络,由此带来了人工智能的又一次繁荣期。然而,当时的计算机难以模拟复杂度高及规模大的神经网络,仍有一定的局限性。
1987年由于LISP机市场崩塌,美国取消了人工智能预算,日本第五代计算机项目失败并退出市场,专家系统进展缓慢,人工智能又进入了萧瑟期。
1997年,IBM深蓝(Deep Blue)战胜国际象棋世界冠军Garry Kasparov。这是一次具有里程碑意义的成功,它代表了基于规则的人工智能的胜利。
2006年,在Hinton和他的学生的推动下,深度学习开始备受关注,为后来人工智能的发展带来了重大影响。
从2010年开始,人工智能进入爆发式发展阶段关于人工智能的海报,其最主要的驱动力是大数据时代的到来,运算能力及机器学习算法得到提高。人工智能快速发展,产业界也开始不断涌现出新的研发成果:
• 2011年,IBM Waston在综艺节目《危险边缘》中战胜了最高奖金得主和连胜纪录保持者;
•2012年,谷歌大脑通过模仿人类大脑在没有人类指导的情况下,利用非监督深度学习方法从大量视频中成习到识别出一只猫的能力;
•2017年,苹果公司在原来个人助理Siri的基础上推出了智能私人助理Siri和智能音响HomePod。
人工智能的定义对人工智能学科的基本思想和内容作出了解释,即围绕智能活动而构造的人工系统。人工智能是知识的工程,是机器模仿人类利用知识完成一定行为的过程。根据人工智能是否能真正实现推理、思考和解决问题,可以将人工智能分为弱人工智能和强人工智能。
弱人工智能是指不能真正实现推理和解决问题的智能机器,这些机器表面看像是智能的,但是并不真正拥有智能,也不会有自主意识。迄今为止的人工智能系统都还是实现特定功能的专用智能,而不是像人类智能那样能够不断适应复杂的新环境并不断涌现出新的功能,因此都还是弱人工智能。
目前的主流研究仍然集中于弱人工智能,并取得了显著进步,如语音识别、图像处理和物体分割、机器翻译等方面取得了重大突破,甚至可以接近或超越人类水平。
强人工智能是指真正能思维的智能机器,并且认为这样的机器是有知觉的和自我意识的,这类机器可分为类人(机器的思考和推理类似人的思维)与非类人(机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式)两大类。
从一般意义来说,达到人类水平的、能够自适应地应对外界环境挑战的、具有自我意识的人工智能称为“通用人工智能”、“强人工智能”或“类人智能”。
强人工智能不仅在哲学上存在巨大争论(涉及到思维与意识等根本问题的讨论),在技术上的研究也具有极大的挑战性。强人工智能当前鲜有进展,美国部门的专家及国家科技委员会比较支持的观点是,至少在未来几十年内难以实现。
作为新一轮产业变革的核心驱动力,人工智能在催生新技术、新产品的同时,对传统行业也具备较强的赋能作用,能够引发经济结构的重大变革,实现社会生产力的整体跃升智能的概念。
人工智能将人从枯燥的劳动中解放出来,越来越多的简单性、重复性、危险性任务由人工智能系统完成,在减少人力投入,提高工作效率的同时智能的概念,还能够比人类做得更快、更准确;人工智能还可以在教育、医疗、养老、环境保护、城市运行、司法服务等领域得到广泛应用,能够极大提高公共服务精准化水平,全面提升人民生活品质;同时,人工智能可帮助人类准确感知、预测、预警基础设施和社会安全运行的重大态势,及时把握群体认知及心理变化,主动作出决策反应,显著提高社会治理能力和水平,同时保障公共安全。
目前,国内人工智能发展已具备一定的技术和产业基础,在芯片、数据、平台、应用等领域集聚了一批人工智能企业,在部分方向取得阶段性成果并向市场化发展。例如,人工智能在金融、安防、客服等行业领域已实现应用,在特定任务中语义识别、语音识别、人脸识别、图像识别技术的精度和效率已远超人工。
人工智能作为一项引领未来的战略技术,世界发达国家纷纷在新一轮国际竞争中争取掌握主导权,围绕人工智能出台规划和政策,对人工智能核心技术、顶尖人才、标准规范等进行部署,加快促进人工智能技术和产业发展。主要科技企业不断加大资金和人力投入智能的概念,抢占人工智能发展制高点。
目前,世界各国都开始重视人工智能的发展。2017年6月29日,首届世界智能大会在天津召开。中国工程院院士潘云鹤在大会主论坛作了题为“中国新一代人工智能”的主题演讲,报告中概括了世界各国在人工智能研究方面的战略:
2016年5月,美国白宫发表了《为人工智能的未来做好准备》;英国2016年12月发布《人工智能:未来决策制定的机遇和影响》;法国在2017年4月制定了《国家人工智能战略》;德国在2017年5月颁布全国第一部自动驾驶的法律;2017年,我国出台了《新一代人工智能发展规划》(国发〔2017〕35号)、《促进新一代
人工智能产业发展三年行动计划(2018-2020 年)》(工信部科〔2017〕315号)等政策文件,推动人工智能技术研发和产业化发展。据不完全统计,2017年我国运营人工智能的公司接近400家,行业巨头百度、腾讯、阿里巴巴等都不断在人工智能领域发力。
从数量、投资等角度来看,自然语言处理、机器人、计算机视觉成为了人工智能最为热门的三个产业方向。